Lagrangian simulation of oil droplets transport due to regular waves
نویسندگان
چکیده
Dispersed oils (i.e., oil droplets) at sea are transported by convection due to waves and buoyancy and by turbulent diffusion. This work follows the common approach in the oil community of using a Lagrangian approach instead of the Eulerian approach. Our focus was on small scale simulation of oil plumes subjected to regular waves. Stokes’ theory was used to obtain analytical expressions for wave kinematics. The velocity above the Mean Water Level was obtained using a second order Taylor’s expansion of the velocity at the MWL. Five hundred droplets were used to simulate the plume for a duration of 60 wave periods. A Monte Carlo framework (300 simulations) was used to compute theoretical mean and variance of plumes. In addition, we introduced a novel dimensionless formulation, whose main advantage was to allow one to report distances in terms of the wave length and times in terms of the wave period. We found that the Stokes’ drift was the major mechanism for horizontal transport. We also found that lighter oils propagate faster but spread less than heavier oils. Increasing turbulent diffusion caused the plume to disperse deeper in the water column and to propagate less forward. The spreading in both vertical and horizontal directions increased with an increase in turbulent diffusion. The increase in wave slope (or wave steepness) caused, in general, an increase in the downward and horizontal transport. In the context of mixing in the water column, the dimensionless formulation showed that small steepness waves with a large turbulent diffusion coefficient could result in essentially the same spreading as large steepness waves with a small turbulent diffusion coefficient. 2006 Published by Elsevier Ltd.
منابع مشابه
Oil Droplet Transport under Non-Breaking Waves: An Eulerian RANS Approach Combined with a Lagrangian Particle Dispersion Model
Oil droplet transport under a non-breaking deep water wave field is investigated herein using Computational Fluid dynamics (CFD). The Reynolds-averaged Navier–Stokes (RANS) equations were solved to simulate regular waves in the absence of wind stress, and the resulting water velocities agreed with Stokes theory for waves. The RANS velocity field was then used to predict the transport of buoyant...
متن کاملArtificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملArtificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...
متن کاملEffect of Surface Roughness on Vortex Length and Efficiency of Gas-oil Cyclones through CFD Modelling
Separation of suspended droplets in a fluid flow has been a great concern for scientists and technologists. In the current study, the effect of the surface roughness on flow field and the performance of a gas-oil cyclone is studied numerically. The droplets and the turbulent airflow inside the cyclone are considered to be the discrete and continuous phases respectively. The Reynolds stress mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Modelling and Software
دوره 22 شماره
صفحات -
تاریخ انتشار 2007